已知:抛物线y=ax2+bx+c(a≠0)的顶点M的坐标为(1,-2)与y轴交于点C(0,),与x轴交于A、B两点(A在B的左边).
(1)求此抛物线的表达式;
(2)点P是线段OB上一动点(不与点B重合),点Q在线段BM上移动且∠MPQ=45°,设线段OP=x,MQ=1,求y1与x的函数关系式,并写出自变量x的取值范围;
(3)①在(2)的条件下是否存在点P,使△PQB是PB为底的等腰三角形,若存在试求点Q的坐标,若不存在说明理由;
②在(1)中抛物线的对称轴上是否存在点F,使△BMF是等腰三角形,若存在直接写出所有满足条件的点F的坐标.
网友回答
解:(1)∵抛物线的顶点为M(1,-2)可设y=a(x-1)2-2,
由点(0,)得:,
∴.
∴,即.
(2)在x2=3中,由y=0,得,
解得:x1=-1,x2=3,
∴A为(-1,0),B为(3,0).
∵M(1,-2),
∴∠MBO=45°,MB=,
∴∠MPQ=45°∠MBO=∠MPQ,
又∵∠M=∠M,
∴△MPQ∽△MPB,
∴,
∴,
即,
∴(0≤x<3).
(3)①存在点Q,使QP=QB,即△PQB是以PB为底的等腰三角形,
作PB的垂直平分线交BM于Q,则QP=QB.
∴∠QPB=∠MBP=45°
又∵∠MPQ=45°,
∴此时MP⊥x轴,
∴P为(1,0),
∴PB=2.
∴Q的坐标为(2,-1).
②使△BMF是等腰三角形的F点有:
F1(1,0),F2(1,),F3(1,),F4(1,2).
解析分析:(1)设抛物线的表达式为y=a(x-1)2-2,将点C的坐标代入即可得出