①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E-∠1=180°;④如图4,AB∥CD

发布时间:2020-07-30 14:41:28

①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是
A.1个B.2个C.3个D.4个

网友回答

B
解析分析:①过点E作直线EF∥AB,由平行线的性质即可得出结论;②过点E作直线EF∥AB,由平行线的性质即可得出结论;③过点E作直线EF∥AB,由平行线的性质可得出∠A+∠E-∠1=180°;④先根据三角形外角的性质得出∠1=∠C+∠P,再根据∠A+∠1=1180°即可作出判断.

解答:①过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠B+∠E=360°,故本选项错误;②过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠1,∠2=∠C,∴∠AEC=∠A+∠C,即∠E=∠A+∠C,故本选项正确;③过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC-∠1=180°,即∠A+∠E-∠1=180°,故本选项正确;④∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A+∠1=180°,即∠A=180°-∠A-∠P,故本选项错误.故选B.

点评:本题考查的是平行线的性质及三角形外角的性质,根据题意作出辅助线是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!