如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.
网友回答
解:作OM⊥BC于M,连接OE,
则ME=MF=EF,
∵AD=12,
∴OE=6,
在矩形ABCD中,OM⊥BC,
∴OM=AB=4,
∵在△OEM中,∠OME=90°,
ME=
=
=2,
∴线段EF的长度为.
解析分析:作OM⊥BC于M,连接OE,根据垂径定理求出EF=2EM,求出OE和OM长,根据勾股定理求出EM,即可求出EF.
点评:本题考查了勾股定理、垂径定理、矩形的性质等知识点,关键是构造直角三角形,题目比较典型,是一道比较好的题目.