如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA、PB分别相切于点A、B,不倒翁的鼻尖正好是圆心O,若∠OAB=25°,求∠APB的度数.

发布时间:2020-08-08 15:45:25

如图是不倒翁的正视图,不倒翁的圆形脸恰好与帽子边沿PA、PB分别相切于点A、B,不倒翁的鼻尖正好是圆心O,若∠OAB=25°,求∠APB的度数.

网友回答

解:方法一:∵PA、PB切⊙O于A、B,
∴PA=PB,
∴OA⊥PA,
∵∠OAB=25°,
∴∠PAB=65,
∴∠APB=180-65°×2=50°;

方法二:连接OB,
∵PA、PB切⊙O于A、B,
∴OA⊥PA,OP⊥AB,
∴∠OAP+∠OBP=180°,
∴∠APB+∠AOB=180°;
∵OA=OB,
∴∠OAB=∠OBA=25°,
∴∠AOB=130°,
∴∠APB=50°;

方法三:连接OP交AB于C,
∵PA、PB切⊙O于A、B,
∴OA⊥PA,OP⊥AB,
OP平分∠APB,
∴∠APC=∠OAB=25°,
∴∠APB=50°.
解析分析:连OB,OP,由AO=OB得,∠OAB=∠OBA=25°,∠AOB=180°-2∠BAB=130°;因为PA、PB分别相切于点A、B,则∠OAP=∠OBP=90°,所以∠APB=180°-∠AOB=50°.

点评:本题利用了有多种证法,利用了切线的性质,三角形和四边形的内角和定理,切线长定理,全等三角形的判定和性质求解.
以上问题属网友观点,不代表本站立场,仅供参考!