质数的概念及相关知识,质数是什么概念?该如何理解?

发布时间:2020-07-10 02:16:42

质数的概念及相关知识,质数是什么概念?该如何理解?

网友回答

1概念
    只有1和它本身两个正因数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)
    100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。
    注:(1)2和3是所有素数中唯一两个连着的数。
    (2)2是唯一一个为偶数(双数)的质数。[1]
    质数的平方数只有三个因数.
    素数定理
    素数定理描述素数的大致分布情况。 素数的出现规律一直困惑著数学家。一个个地看,素数在正整数中的出现没有什么规律。可是总体地看,素数的个数竟然有规可循。对正实数x,定义π(x)为不大于x的素数个数。数学家找到了一些函数来估计π(x)的增长。以下是第一个这样的估计。 π(x)≈x/ln x 其中ln x为x的自然对数。上式的意思是当x趋近∞,π(x) 和x/ln x的比趋 近1(注:该结果为高斯所发现)。但这不表示它们的数值随着x增大而接近。 下面是对π(x)更好的估计: π(x)=Li (x) + O (x e^(-(ln x)^(1/2)/15),当 x 趋近∞。 其中 Li(x) = ∫(dt/ln x2,x),而关系式右边第二项是误差估计。
    素数定理可以给出第n个素数p(n)的渐近估计:p(n)~n/ln n. 它也给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。 这定理的式子於1798年法国数学家勒让德提出。1896年法国数学家哈达玛(Jacques Hadamard)和比利时数学家普森(Charles Jean de la Vallée-Poussin)先後独立给出证明。证明用到了复分析,尤其是黎曼ζ函数。 因为黎曼ζ函数与π(x)关系密切,关于黎曼ζ函数的黎曼猜想对数论很重要。一旦猜想获证,便能大大改进素数定理误差的估计。1901年瑞典数学家Helge von Koch证明出,假设黎曼猜想成立,以上关系式误差项的估计可改进为 :π(x)=Li (x) + O (x^(1/2) ln x) 至於大O项的常数则还未知道。
    素数定理有些初等证明只需用数论的方法。第一个初等证明于1949年由匈牙利数学家保罗·艾狄胥(“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些问题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 但是,有必要指出的是,虽然该初等证明只用到初等的办法,其难度甚至要比用到复分析的证明远为困难。
    算术基本定理
    任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2)......(P_n^an) , 这里P_1<P_2<...<P_n是质数,其诸方幂 ai 是正整数。
    这样的分解称为N 的标准分解式。
    算术基本定理的内容由两部分构成:分解的存在性、分解的唯一性(即若不考虑排列的顺序,正整数分解为素数乘积的方式是唯一的)。
    算术基本定理是初等数论中一个基本的定理,也是许多其他定理的逻辑支撑点和出发点。
    此定理可推广至更一般的交换代数和代数数论。高斯证明复整数环Z[i]也有唯一分解定理。它也诱导了诸如唯一分解整环,欧几里得整环等等概念。 更一般的还有戴德金理想分解定理。
    费马数
    被称为“17世纪最伟大的法国数学家”的费马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65,537,都是质数,由于F5太大(F5=4,294,967,297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。这便是费马数。费马死后67年,25岁的瑞士数学家欧拉证明:F5=641×6,700,417是一个合数。
    以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1,495,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。
    高斯已经证明,一个正多边形能用直尺和圆规作出当且仅当边数为质数的Fn或若干个为质数的Fn的乘积。
    梅森素数
    17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:当2^p-1 中的p是质数时,2^p-1是质数。他验算出:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,2^p-1都是素数,但p=11时,所得2,047=23×89却不是素数。
    梅森去世250年后,美国数学家科勒证明,2^67-1=193,707,721×761,838,257,287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得杂乱无章,也给人们寻找质数规律造成了困难。
    目前最大的已知质数是梅森质数2^57,885,161-1。迄今为止,人类仅发现48个梅森质数。由于这种质数珍奇而迷人,它被人们称为“数学珍宝”。[2]
    中国数学家和语言学家周海中根据已知的梅森质数及其排列,巧妙地运用联系观察法和不完全归纳法,于1992年正式提出了梅森素质分布的猜想(即周氏猜测)。[3]
    素数等差数列
    等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。类似7、37、67、97、107、137、167、197。这样由素数组成的数列叫做等差素数数列。2004年,格林和陶哲轩证明存在任意长的素数等差数列。2004年4月18日,两人宣布:他们证明了“存在任意长度的素数等差数列”,也就是说,对于任意值K,存在K个成等差级数的素数。例如 K=3,有素数序列3, 5, 7 (每两个差2)……K=10,有素数序列 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089 (每两个差210)[4]。
    定理
    在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在一个素数。
    存在任意长度的素数等差数列。(格林和陶哲轩,2004年)
    一个偶数可以写成两个数字之和,其中每一个数字都最多祇有9个质因数。(挪威数学家布朗,1920年)
    一个偶数必定可以写成一个质数 p 加上一个合成数 c ,其中 c 的因子个数有上界。(瑞尼,1948年)
    一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5) (中国潘承洞,1968年)
    一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2) (中国陈景润)[1]

网友回答

债务人或者第三人有权处分的下列权利可以出质:汇票、支票、本票;债券、存款单;仓单、提单;可以转让的基金份额、股权;可以转让的注册商标专用权、专利权、著作权等知识产权中的财产权。
以上问题属网友观点,不代表本站立场,仅供参考!