如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+

发布时间:2020-08-09 06:53:32

如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.
(1)求过A、C两点直线的解析式;
(2)当点N在半圆M内时,求a的取值范围;
(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.

网友回答

解:(1)因为在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),
所以B(4,0),C(4,2),
设过A,C两点的直线解析式为y=kx+b,
把A,C两点代入得,
解得,
故过点A、C的直线的解析式为y=x-.

(2)由抛物线过A,B两点,可设抛物线的解析式为y=a(x-1)(x-4),
整理得,y=ax2-5ax+4a.
∴顶点N的坐标为(,-).
由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,
<-<2,
解这个不等式,得-<a<-.

(3)设EF=x,则CF=x,BF=2-x,AF=2+x,AB=3,
在Rt△ABF中,由勾股定理AB2+BF2=AF2,
得x=,BF=,
①由△ABF∽△CMN得,=,即MN==.
当点N在CD的下方时,由-=2-=,求得N1(,).
当点N在CD的上方时,由-=2+=,求得N 2(,).
②由△ABF∽△NMC得,=即MN==.
当点N在CD的下方时,由-=2-=-,求得N3(,).
当点N在CD的上方时,由-=2+=,求得N4(,).
解析分析:(1)根据矩形的性质及A点坐标可求出C点坐标,再根据A、C两点的坐标用待定系数法即可求出过A、C两点直线的解析式.
(2)矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),可求出B、D、M、E点的坐标,根据抛物线与坐标轴交于A、B两点故可设出抛物线的交点式,根据交点式可求出N点坐标,由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,即可求出a的取值范围.
(3)根据切线的性质定理、矩形的边长及勾股定理可求出△各边的长,因为在△ABF与△CMN均为直角三角形,故应分两种情况讨论即△ABF∽△CMN,△ABF∽△NMC,同时在讨论时还要考虑到N在CD的下方与上方的情况.

点评:此题比较复杂,综合性较强,综合考查了圆、一次函数、二次函数的性质,是一道难度较大的题目.
以上问题属网友观点,不代表本站立场,仅供参考!