如图,过△ABC的顶点A作AF⊥AB,且AF=AB,再作AH⊥AC,且AH=AC,BH交AC于E,CF交AB于D,BH与CF相交于点O.
求证:(1)HB=CF;(2)HB⊥CF.
网友回答
解:(1)∵AF⊥AB,AH⊥AC,
∴∠HAC=∠BAF=90°,
∴∠HAC+∠BAC=∠BAF+∠BAC,
即∠BAH=∠CAF.
在△HAB和△CAF中,
∴△HAB≌△CAF(SAS),
∴HB=CF,∠B=∠F.
(2)在△AFD和△BOD中,
∠B=∠F,∠ODB=∠ADF,
∴∠DOB=∠FAD,即HB⊥CF.
解析分析:根据已知条件,结合三角形全等的条件可得出△HAB≌△CAF,得到边相等,角相等.再求证HB⊥CF.
点评:本题考查了三角形全等的判定和性质;题目较复杂,信息量较大,在解答时要注意仔细读题找出两三角形全等的条件即可解答.