如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF=(AB+AC).

发布时间:2020-07-29 22:30:16

如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF=(AB+AC).

网友回答

证明:过B作BN∥AC交EM延长线于N点,
∵BN∥AC,BM=CM,
∴CF:BN=CM:BM,∠CFM=∠N,
∴CF=BN,
又∵AD∥ME,AD平分∠BAC,
∴∠CFM=∠DAC=∠E,
∴∠E=∠N,
∴△BEN是等腰三角形,
∴BE=BN=CF,
∵∠EFA=∠CFM,
∴∠E=∠EFA,
∴AE=AF,
AB+AC=AB+AF+FC=AB+AE+FC=BE+FC,
即BE=CF=(AB+AC).
解析分析:过B作BN∥AC交EM延长线于N点,根据平行线分线段成比例定理可得CF=BN,根据两直线平行,内错角相等可得∠CFM=∠N,再根据平行线的性质与角平分线的定义求出∠CFM=∠DAC=∠E,从而得到∠E=∠N,然后证明得到△BEN是等腰三角形,再根据平行线的性质求出∠E=∠EFA,根据等角对等边的性质求出AE=AF,然后列式整理即可得证.

点评:本题考查了等腰三角形的判定与性质,角平分线的定义,两直线平行,内错角相等的性质,两直线平行,同位角相等的性质,作辅助线构造出等腰三角形是解题的关键,也是本题的难点.
以上问题属网友观点,不代表本站立场,仅供参考!