在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E,若∠CAE=∠B-30°,则∠AEB的度数为________.

发布时间:2020-07-30 07:16:33

在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、E,若∠CAE=∠B-30°,则∠AEB的度数为________.

网友回答

100°
解析分析:先根据DE垂直平分斜边AB可得到∠B=∠EAB,由于∠CAE=∠B-30°,所以∠CAE+∠EAB+∠B=180°-∠C,即3∠B-30°=90°,故∠B=∠EAB=40°,由三角形内角和定理即可求出∠AEB的度数.

解答:∵DE垂直平分斜边AB,∴∠B=∠EAB,∵∠CAE=∠B-30°,∴∠CAE+∠EAB+∠B=180°-∠C,即3∠B-30°=90°,∴∠B=∠EAB=40°,∴∠AEB=180°-∠B-∠EAB=180°-40°-40°=100°.故
以上问题属网友观点,不代表本站立场,仅供参考!