如图,在等腰直角△ABC中,∠C=90°,BC=4,D是BC中点,将△ABC折叠,使A与D重合.EF为折痕,则DE的长是________.
网友回答
解析分析:先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,再根据勾股定理即可求解,进而得出DE的长.
解答:解:过点D作DM⊥AB于点M,
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
∵BC=4,D是BC中点,
∴CD=2,CF=x,则CA=CB=4,
∴DF=FA=4-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,
即x2+4=(4-x)2,
解得x=,
∴sin∠BED=sin∠CDF===,
∵∠B=45°,∠DMB=90°,BD=2,
∴DM=BM=,
∴sin∠BED===,
解得:DE=,
故