菱形ABCD中,∠BAD=60°,E为AB边上一点,且AE=3,BE=5,在对角线AC上找一点P,使PE+PB的值最小,则最小值为________.
网友回答
7
解析分析:根据菱形的对角线互相垂直平分,知点B和点D关于AC对称.连接DE交AC于点P,则P即是所求作的点,且PE+PB的最小值即是DE的长.
解答:解:过D点作DF⊥AB于F,
∵∠BAD=60°,∴△ABD是等边三角形,
∴AF=BF,
在Rt△ADF中,AD=AB=AE+BE=8,AF=AB=4.
∴DF===4,
在Rt△EDF中,EF=AF-AE=1,
∴DE===7.
∴PE+PB的最小值是7.
故