我们将1×2×3×…×n记作n!,如:5!=1×2×3×4×5;100!=1×2×3×…×100;若设S=1×1!+2×2!+3×3!+…+2007×2007!,则S

发布时间:2020-07-30 05:17:49

我们将1×2×3×…×n记作n!,如:5!=1×2×3×4×5;100!=1×2×3×…×100;若设S=1×1!+2×2!+3×3!+…+2007×2007!,则S除以2008的余数是A.0B.1C.1004D.2007

网友回答

D
解析分析:根据S的特点,再加上一列K=1!+2!+3!+…+2007!后不含系数的n!的形式的和的形式整理就可以得到意想不到的效果.

解答:设K=1!+2!+3!+…+2007!,则S+K=1×1!+2×2!+3×3!+…+2007×2007!+1!+2!+3!+…+2007!=(1+1)1!+(2+1)2!+(3+1)3!+…+(2007+1)2007!=2×1!+3×2!+4×3!+…+2007×2006!+2008×2007!=2!+3!+…+2007!+2008×2007!=-1+1!+2!+3!+…+2007!+2008×2007!=-1+K+2008×2007!,∴S=2008×2007!-1,=2008!-1,∴S除以2008的余数是-1,即S再加上1则能被2008整除,∴商减小1,则余数为2007.故选D.

点评:本题是信息给予题,提供一列K=1!+2!+3!+…+2007!,再通过整理去掉这列数是解本题的关键,也是难点.这就要求同学们在平时的学习中积累经验,提高自身能力.
以上问题属网友观点,不代表本站立场,仅供参考!