在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论.
(2)若AD:AO=6:5,BC=3,求BD的长.
网友回答
(1)直线BD与⊙O的位置关系是相切,
证明:连接OD,DE,
∵∠C=90°,
∴∠CBD+∠CDB=90°,
∵∠A=∠CBD,
∴∠A+∠CDB=90°,
∵OD=OA,
∴∠A=∠ADO,
∴∠ADO+∠CDB=90°,
∴∠ODB=180°-90°=90°,
∴OD⊥BD,
∵OD为半径,
∴BD是⊙O切线;
(2)解:∵AD:AO=6:5,
∴AD:AE=6:10,
∴AD:AE:DE=6:10:8,
∵AE是直径,
∴∠ADE=∠C=90°,
∵∠CBD=∠A,
∴△ADE∽△BCD,
∴AD:AE:DE=BC:BD:CD=6:10:8,
即BC:BD=6:10,
∵BC=3,
∴BD=5.
解析分析:(1)连接OD,DE,求出∠ADE=90°=∠C推出DE∥BC∴∠EDB=∠CBD=∠A,根据∠A+∠OED=90°求出∠EDB+∠ODE=90°,根据切线的判定推出即可;???
(2)求出AD:AE:DE=6:10:8,求出△ADE∽△BCD,推出AD:AE:DE=BC:BD:CD=6:10:8,代入求出即可.
点评:本题考查了切线的判定,平行线性质和判定,等腰三角形性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理能力.