如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.

发布时间:2020-08-07 23:55:46

如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.

网友回答

解:OE=OF,
证明:连接OA,OB,
∵OA=OB,
∴∠OAB=∠OBA.即∠OAE=∠OBF.
∴在△OAE与△OBF中,

∴△OAE≌△OBF(SAS).
∴OE=OF.
解析分析:OE=OF,可以利用SAS判定△OAE≌△OBF,根据全等三角形的对应边相等,可得到OE=OF.

点评:考查圆的性质,全等三角形的判定等知识的综合应用及推理论证能力.
以上问题属网友观点,不代表本站立场,仅供参考!