已知,△ABC中,∠BAC=45°,以AB边为边以点B为直角顶点在△ABC外部作等腰直角三角形ABD,以AC边为斜边在△ABC外部作等腰直角三角形ACE,连接BE、D

发布时间:2020-08-09 15:33:50

已知,△ABC中,∠BAC=45°,以AB边为边以点B为直角顶点在△ABC外部作等腰直角三角形ABD,以AC边为斜边在△ABC外部作等腰直角三角形ACE,连接BE、DC,两条线段相交于F,试求∠EFC的度数.

网友回答

解:作DH∥BE交EA延长线于H,连接CH,
∵△ABD和△AEC是等腰直角三角形,∠BAC=45°,
∴∠BDA+∠DAE=180°,
∴四边形BEHD为平行四边形,
在△CEH和△EAB中,

∴△CEH≌△EAB,
∴CH=BE=DH,∠CHE=∠ABE,
∵∠ABE+∠AEB=∠BAE=90°,
∴∠CHE+∠BEH=90°,
∴∠CHD=90°,
∴∠EFC=∠CDH=45°.
解析分析:作DH∥BE交EA延长线于H,连接CH,易证四边形BEHD为平行四边形,然后证明△CEH≌△EAB,根据平行线的性质,可得出∠CHD是直角,即可求出∠EFC的度数.

点评:本题主要考查了等腰直角三角形的性质和全等三角形的判定与性质,通过证明三角形全等,是证明角或边相等的重要方法.
以上问题属网友观点,不代表本站立场,仅供参考!