如图,在平行四边形ABCD中,∠BCD=120°,分别延长DC、BC到点

发布时间:2020-08-06 06:48:10

如上

网友回答

1)证明:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,
∵△BCE和△CDF都是正三角形, ∴AE=AF;
(2)解:∵△ABE≌△FDA,
∴∠AEB=∠FAD
∴BE=BC,DF=CD,∠EBC=∠CDF=60°,
∴∠ABE=∠FDA,AB=DF,BE=AD,
在△ABE和△FDA中,AB=DFamp; ∠A
∵∠ABE=60°+60°=120°,
∴∠AEB+∠BAE=60°,
∴∠FAD+∠BAE=60°,
∴∠EAF=120°-60°=60°.
以上问题属网友观点,不代表本站立场,仅供参考!