如图①,将一个内角为120°的菱形纸片沿较长对角线剪开,得到图②的两张全等的三角形纸片.将这两张三角形纸片摆放成图③的形式.点B、F、C、D在同一条直线上,AB分别交DE、EF于点P、M,AC交DE于点N.
(1)求证:△APN≌△EPM.
(2)连接CP,试确定△CPN的形状,并说明理由.
(3)当P为AB的中点时,求△APN与△DCN的面积比.
网友回答
(1)
证明:∵四边形ABCD是菱形,
∴∠A=∠B=∠D=∠E,
∴PB=PD.
∵AB=DE,
∴PA=PE.
∵∠EPM=∠APN,
在△APN和△EPM中,
,
∴△APN≌△EPM;
(2)连接CP.
∵∠ACB=∠DFE=120°,AC=BC=DF=FE,
∴∠D=∠A=∠B=30°.
∴∠APN=60°.
∴∠CNP=90°,
∴△CPN的形状是直角三角形;
(3)由(2)可知∠APN=60°,∠CNP=90°,
∴∠CPN=30°.
∴PN:CN=:1,
∵∠D=∠A,∠ANP=∠DNC,
∴△ANP∽△DNC.
∴S△ANP:S△DNC=PN2:CN2=3:1.
即△APN与△DCN的面积比为3:1.
解析分析:(1)我们可以利用菱形的性质及全等三角形的判定方法AAS判定△APN≌△EPM.
(2)△CPN的形状是直角三角形,利用等腰三角形的性质:三线合一以及已知条件证明∠CNP=90°即可;
(3)要求△APN与△DCN的面积比,我们可以根据菱形的性质及已知,得到PN:CN=,根据相似三角形的判定,得到△ANP∽△DNC,即△APN与△DCN的面积比为3:1.
点评:此题考查了学生对全等三角形的判定、等腰三角形的性质、菱形的性质及相似三角形的判定等知识点的掌握情况.