如图是一个上底和腰长为2的等腰梯形,点Q从A点出发,以1个单位/秒的速度向B运动,点P从D点出发,以1个单位/秒的速度向C运动.∠D=60°,则当运动时间为________秒时,四边形CPQB的面积为.
网友回答
4-
解析分析:由点P、Q运动的速度相等,可得四边形CPQB是等腰梯形,设时间为t,用含t的式子表示出四边形CPQB的面积,建立二元一次方程,求解即可.
解答:如图所示:
设当运动时间为t秒时,四边形CPQB的面积为,
则DP=t,CP=2-t,∠CPQ=∠D=60°,
∴∠ECP=30°,
∴PE=(2-t),CE=(2-t),
又∵四边形CPQB是等腰梯形,
∴PQ=CB+2PE=2+2-t=4-t,
∴S四边形CPQB=(CB+PQ)×CE=(2+4-t)×(2-t)=t2-2t+3=,
解得:t1=4-,t2=4+(舍去).
故当运动时间为(4-)秒时,四边形CPQB的面积为.
故