如图,两同心圆中,大圆的弦AB的中点为C,已知大圆的半径为5cm,小圆的半径为3cm,弦AB为8cm.(1)AB与小圆有何位置关系?为什么?(2)圆环的面积是多少?

发布时间:2020-08-06 07:25:29

如图,两同心圆中,大圆的弦AB的中点为C,已知大圆的半径为5cm,小圆的半径为3cm,弦AB为8cm.
(1)AB与小圆有何位置关系?为什么?
(2)圆环的面积是多少?

网友回答

解:(1)相切,
理由:连接OC,OB,则OC⊥AB,
由已知得BC=AB=4,OB=5,
∴OC===3,
从而圆心O到直线AB的距离等于小圆的半径,
所以AB与小圆相切;

(2)S环=πOB2-πOC2=π(52-32)=16π(cm)2.

解析分析:(1)求出OC的长度,与小圆的半径比较就可以判断位置关系;
(2)圆环的面积=大圆面积-小圆面积.

点评:本题考查:(1)连接半径和弦心距构造直角三角形,利用勾股定理求出弦心距.(2)圆环的面积公式.
以上问题属网友观点,不代表本站立场,仅供参考!