如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1,y1)、P2(x2,y2)在反比例函数y=(x>0)的图象上,则y1+y2=A.1B.-1C.D.+1
网友回答
C
解析分析:根据⊙O1与⊙O2相外切,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,分别得出x1=y1,EO2=O2P2=y2,再利用反比例函数y=得出P1点坐标,即可表示出P2点的坐标,再利用反比例函数的性质得出y2的值,即可得出y1+y2的值.
解答:解:∵⊙O1过原点O,⊙O1的半径O1P1,∴O1O=O1P1,∵⊙O1的半径O1P1与x轴垂直,点P1(x1,y1)在反比例函数y=(x>0)的图象上,∴x1=y1,x1y1=1,∴x1=y1=1.∵⊙O1与⊙O2相外切,⊙O2的半径O2P2与x轴垂直,∴EO2=O2P2=y2,OO2=2+y2,∴P2点的坐标为:(2+y2,y2),∵点P2在反比例函数y=(x>0)的图象上,∴(2+y2)?y2=1,解得:y2=-1+或-1-(不合题意舍去),∴y1+y2=1+(-1+)=,故选C.
点评:此题主要考查了反比例函数的综合应用和相切两圆的性质,根据已知得出O1O=O1P1以及OO2=2+y2是解题关键.