如图四边形ABCD中∠BAD+∠BCD=180·AD﹑BC的延长线交于点F,DC﹑AB的延长线交于点E,∠E﹑∠F的平分线交于点H.求证:EH⊥FH.
网友回答
连接AH延长交BF于P,利用外角易证:
∠FHP=∠AFH+∠FAH
∠EHP=∠AEH+∠EAH
相加:∠EHF=∠AFH+∠AEH+∠A.1)
∠BAD+∠BCD=180
所以:∠ADE+∠ABC=360-(∠BAD+∠BCD)=180;
∠FAE=∠BCE
△ADE、△ABF中:
∠A+∠AED=180-∠ADE;∠A+∠AFB=180-∠ABF
相加:∠A+1/2(∠HFC+∠AFB)=90
∠FMH+∠AED+∠HEC=90
∠FMH+∠AED+∠HEC=90
∠FMH+∠HMF=90
所以:∠FHE=180-(∠FMH+∠HMF)=90
EH⊥FH.
======以下答案可供参考======
供参考答案1:
连接AH延长交BF于P,利用外角易证:
∠FHP=∠AFH+∠FAH
∠EHP=∠AEH+∠EAH
:∠EHF=∠AFH+∠AEH+∠A.......1)
∠BAD+∠BCD=180
所以:∠ADE+∠ABC=360-(∠BAD+∠BCD)=180;
∠FAE=∠BCE
△ADE、△ABF中:
∠A+∠AED=180-∠ADE;∠A+∠AFB=180-∠ABF
∠A+1/2(∠HFC+∠AFB)=90
∠FMH+∠AED+∠HEC=90
∠FMH+∠AED+∠HEC=90
∠FMH+∠HMF=90
所以:∠FHE=90
EH⊥FH.
供参考答案2:不会做供参考答案3:延长FH交AB于M,设FH与DC交于O∵∠BAD+∠BCD=180°∴D、A、B、C四点共圆∴∠FDO(∠FDC)=∠FBM(∠FBA)