如图,在矩形ABCD中,AB=2cm,BC=3cm,点E是BC边上一点,且BE=1cm,求点D到AE的距离.
网友回答
解:过点D作DF⊥AE于点F.
∵四边形ABCD为矩形,
∴AD=BC=3,∠B=90°,AD∥BC.
∴∠AFD=∠B,∠1=∠2.
∴△ADF∽△EAB.
∴=.
∵AB=2,BE=1,
∴AE=.
∴DF=.
答:点D到AE的距离为cm.
解析分析:过点D作DF⊥AE于点F.根据矩形的性质得到AD=BC=3,∠B=90°,AD∥BC,从而得到∠AFD=∠B,∠1=∠2,利用两对对应角相等证得△ADF∽△EAB,从而得到比例式=,代入相关的数据后即可求得DF的长.
点评:本题考查了相似三角形的判定与性质,解题的关键是利用相似三角形的判定方法发现并证得相似三角形.