α,β表示两个不同的平面,l表示既不在α内也不在β内的直线,存在以下三种情况:①l⊥α;②l∥β;③α⊥β.若以其中两个为条件,另一个为结论,构成命题,其中正确命题的

发布时间:2020-07-31 09:15:05

α,β表示两个不同的平面,l表示既不在α内也不在β内的直线,存在以下三种情况:①l⊥α;②l∥β;③α⊥β.若以其中两个为条件,另一个为结论,构成命题,其中正确命题的个数为A.0B.1C.2D.3

网友回答

C
解析分析:分别利用线面垂直的性质及面面垂直的判定、面面垂直的性质及线面平行的判定,即可得到结论.

解答:∵α、β表示平面,l表示不在α内也不在β内的直线,①l⊥α,②l∥β,③α⊥β,∴以①②作为条件,③作为结论,即若l⊥α,l∥β,根据线面垂直的性质及面面垂直的判定,可得α⊥β,故是真命题;以①③作为条件,②作为结论,即若l⊥α,α⊥β,根据面面垂直的性质及线面平行的判定,可得l∥β,故是真命题;以②③作为条件,①作为结论,即若l∥β,α⊥β,则l⊥α,或l与α相交,故是假命题.故选C.

点评:本题考查线面垂直、面面垂直的判定与性质,考查学生的推理能力,属于中档题.
以上问题属网友观点,不代表本站立场,仅供参考!