已知:如图,在△ABC中,AC=BC,∠ACB=90°,MN是过点C的一条直线,AM⊥MN于M,BM⊥MN于N求证:AM=CN.

发布时间:2020-08-07 06:12:59

已知:如图,在△ABC中,AC=BC,∠ACB=90°,MN是过点C的一条直线,AM⊥MN于M,BM⊥MN于N
求证:AM=CN.

网友回答

证明:∵∠ACB=90°,
∴∠ACM+∠BCN=90°,
∵AM⊥MN于M,BM⊥MN于N,
∴∠M=∠N=90°,
∴∠MAC+∠ACM=90°,
∴∠MAC=∠BCN,
∵在△AMC和△CNB中

∴△AMC≌△CNB(AAS),
∴AM=CN.
解析分析:由∠ACB=90°,则∠ACM+∠BCN=90°,由AM⊥MN于M,BM⊥MN于N得∠M=∠N=90°,根据等角的余角相等得到∠MAC=∠BCN,然后根据“AAS”可判断△AMC≌△CNB,所以有AM=CN.

点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.
以上问题属网友观点,不代表本站立场,仅供参考!