如图所示,已知:在⊙O中,BC=4,CD是⊙O的直径,CD⊥AB于点E,∠C=30°.(1)求图中扇形OAB的面积;(2)若用扇形OAB围成一个圆锥侧面,求这个圆锥的

发布时间:2020-07-29 18:30:58

如图所示,已知:在⊙O中,BC=4,CD是⊙O的直径,CD⊥AB于点E,∠C=30°.
(1)求图中扇形OAB的面积;
(2)若用扇形OAB围成一个圆锥侧面,求这个圆锥的底面圆的半径.

网友回答

解:(1)在⊙O中,∵∠C=30°,
∴∠BOD=2∠C=60°,
∵直径CD⊥弦AB,
∴=,
∴∠AOB=2∠BOD=2×60°=120°,(2分)
过点O作OF⊥BC于F.
∵BC=4,
∴BF=BC=×4=2,
设FO的长为x,则OB=2x,
在Rt△BOF中,由勾股定理得:
4x2-x2=(2)2,
解得x=2,
∴OB=2x=4,(4分)
∴S扇形OAB=(120π×42)÷360=,
或S扇形OAB=(240π×42)÷360=;(5分)

(2)设圆锥的底面半径为r,
则4πr=或4πr=,
r=或r=,(9分)
答:(1)图中扇形OAB的面积为或;
(2)所求圆锥的底面半径为r=或r=.(10分)
解析分析:(1)过点O作OF⊥BC于F,求得BC的长后再求得BF的长,由勾股定理求得OB的长后即可求面积;(2)利用扇形的面积公式计算其底面半径即可.

点评:本题考查了圆锥的计算,解题的关键是正确的理解圆锥的侧面展开扇形及弧长之间的关系.
以上问题属网友观点,不代表本站立场,仅供参考!