如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC,求证:BF=AC+AF.

发布时间:2020-07-30 04:34:04

如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC,求证:BF=AC+AF.

网友回答


证明:过D作DN⊥AC,垂足为N,连接DB、DC,
则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),
又∵DF⊥AB,DN⊥AC,
∴∠DFB=∠DNC=90°,
在Rt△DBF和Rt△DCN中
∵,
∴Rt△DBF≌Rt△DCN(HL)
∴BF=CN,
在Rt△DFA和Rt△DNA中
∵,
∴Rt△DFA≌Rt△DNA(HL)
∴AN=AF,
∴BF=AC+AN=AC+AF,
即BF=AF+AC.

解析分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.

点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!