如下图,△ABC中,∠C=90°,∠B=45°,AD是角平分线,DE⊥AB于E,则下列结论不正确的是A.AC=AEB.CD=DEC.CD=DBD.AB=AC+CD
网友回答
C
解析分析:根据角平分线性质求出CD=DE,根据勾股定理求出AC=AE,根据三角形的内角和定理求出∠B=∠BDE,推出BE=DE=CD,即可推出AB=AC+CD.
解答:B、∵AD是角平分线,DE⊥AB,∠C=90°,∴CD=DE,故本选项错误;A、由勾股定理得:AC=,AE=,∴AC=AE,故本选项错误;D、∵∠B=45°,DE⊥AB,∴∠BDE=180°-90°-45°=45°=∠B,∴BE=DE=CD,∴AB=AE+BE=AC+CD,故本选项错误;C、∵CD=DE,BD>DE,∴BD>CD,故本选项正确;故选C.
点评:本题主要考查对三角形的内角和定理,等腰三角形的判定,角平分线性质,等腰直角三角形,勾股定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.