函数f(x)是定义在R上的奇函数,且f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数为______.

发布时间:2020-08-07 11:00:36

函数f(x)是定义在R上的奇函数,且f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数为 ______.

网友回答

解:由f(x+3)=f(x),得出3是该函数的周期,
由于f(2)=0,若x∈(0,6),
则可得出f(5)=f(2)=0,
又根据f(x)为奇函数,则f(-2)=-f(2)=0,
又可得出f(4)=f(1)=f(-2)=0,
又函数f(x)是定义在R上的奇函数,可得出f(0)=0,
从而f(3)=f(0)=0,在f(x+3)=f(x)中,
令,得出,
又根据f(x)是定义在R上的奇函数,得出,
从而得到,即,
故,
从而=f(4)=f(1)=f(3)=f(5)=f(2)=0,若x∈(0,6).
以上问题属网友观点,不代表本站立场,仅供参考!