如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,BO长的一半为半径作⊙O,当射线BA绕点B按顺时针方向旋转一定的角度后与⊙O相切,则旋转的角度为(小于180°)A.30°B.60°C.30°或120°D.60°或120°
网友回答
D
解析分析:将AB绕B点旋转到与圆相切的位置,如图:切点分别为M、N,依题意BO长为直径,OM为半径;在Rt△BOM中可求∠MBO的度数,根据圆的对称性得∠NBO=∠MBO,由此可求两个旋转角度数.
解答:解:设AB绕B点旋转过程中,与⊙O分别相切于M、N两点,由切线的性质可知∠OMB=∠ONB=90°;在Rt△BOM中,BO=2MO,∴∠MBO=30°,∠ABM=90°-∠MBO=60°,∠ABN=90°+∠NBO=120°,即:旋转角为60°或120°.故选D.
点评:本题考查了旋转与圆的综合题,解题时需要形数结合,根据切线的性质,圆的对称性求解.