已知x-y=6,xy=-8,
(1)求x2+y2的值;
(2)求代数式的值.
网友回答
解:(1)∵x-y=6,xy=-8,
∴(x-y)2=x2+y2-2xy,
∴x2+y2=(x-y)2+2xy=36-16=20;
(2)∵(x+y+z)2+(x-y-z)(x-y+z)-z(x+y),
=(x2+y2+z2+2xy+2xz+2yz)+[(x-y)2-z2]-xz-yz,
=x2+y2+z2+xy+xz+yz+x2+y2-xy-z2-xz-yz,
=x2+y2,
又∵x2+y2=20,
∴原式=20.
解析分析:(1)由(x-y)2=x2+y2-2xy,即可得x2+y2=(x-y)2+2xy,将x-y=6,xy=-8代入即可求得x2+y2的值;(2)首先化简(x+y+z)2+(x-y-z)(x-y+z)-z(x+y),可得(x+y+z)2+(x-y-z)(x-y+z)-z(x+y)=x2+y2,由(1)即可求得