为解方程(x2-1)2-5(x2-1)+4=0,我们可将x2-1看作一个整体,然后设x2-1=y;那么原方程可化为y2-5y+4=0①,解这个方程,得y1=1,y2=

发布时间:2020-08-08 12:17:36

为解方程(x2-1)2-5(x2-1)+4=0,我们可将x2-1看作一个整体,然后设x2-1=y;那么原方程可化为y2-5y+4=0①,解这个方程,得y1=1,y2=4.当y1=1时,x2-1=1,所以;当y2=4时,x2-1=4,所以则原方程的解为,,,
解答下列问题:
(1)填空:在由原方程得到方程①的过程中,利用______法达到降次的目的,体现了______的数学思想;
(2)请利用上述方法解方程:(x2-2)2-5(x2-2)+6=0.

网友回答

解:(1)换元,转化;

(2)设x2-2=y,
则原方程可化为:y2-5y+6=0,
解这个方程,得y1=2,y2=3,
当y1=2时,x2-2=2,
所以x=±2,
x1=2,x2=-2,
当y2=3时,x2-2=3,
所以x=,
x3=,x4=-,
则原方程的解为x1=2,x2=-2,x3=,x4=-.
解析分析:(1)根据换元法的意义即可求出
以上问题属网友观点,不代表本站立场,仅供参考!