如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.

发布时间:2020-08-08 05:15:55

如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.
求证:点C在∠AOB的平分线上.

网友回答

证明:作CG⊥OA于G,CF⊥OB于F,如图,
在△MOE和△NOD中,
OM=ON,∠MOE为公共角,OE=OD,
∴△MOE≌△NOD(SAS).
∴S△MOE=S△NOD.
∴S△MOE-S四边形ODCE=S△NOD-S四边形ODCE,
∴S△MDC=S△NEC,
∵OM=ON,OD=OE,
∴MD=NE,
由三角形面积公式得:DM×CG=×EN×CF,
∴CG=CF,又∵CG⊥OA,CF⊥OB,
∴点C在∠AOB的平分线上.
解析分析:首先证明△MOE≌△NOD(SAS),然后利用图形中的面积关系求得S△MDC=S△NEC,已知,两三角形的底相等,所以它们的高也相等,它们的高即是CG,CF,所以点C在∠AOB的平分线上.

点评:本题主要考查了角平分线上的点到角两边的距离相等的逆定理.而且考查了三角形全等判定和性质;所以学生所学的知识要系统.正确作出辅助线是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!