已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与

发布时间:2020-07-29 16:42:30

已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若m为整数,且抛物线y=mx2-(3m-1)x+2m-2与x轴两交点间的距离为2,求抛物线的解析式;
(3)若直线y=x+b与(2)中的抛物线没有交点,求b的取值范围.

网友回答

(1)证明:分两种情况讨论.
①当m=0时,方程为x-2=0,∴x=2,方程有实数根;
②当m≠0,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=9m2-6m+1-8m2+8m=m2+2m+1=(m+1)2
∴不论m为何实数,△≥0成立,∴方程恒有实数根;
综合①、②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.

(2)解:设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标.
令y=0,则mx2-(3m-1)x+2m-2=0
由求根公式得,x1=2,,
∴抛物线y=mx2-(3m-1)x+2m-2不论m为任何不为0的实数时恒过定点(2,0).
∵|x1-x2|=2,
∴|2-x2|=2,
∴x2=0或x2=4,∴m=1或,
当m=-时,y=-x2+2x-,
把(2,0)代入,左边=右边,
m=-符合题意,
当m=1时,y=x2-2x,
把(2,0)代入,左边=右边,
m=1符合题意,
∴抛物线解析式为y=-x2+2x-或y=x2-2x
答:抛物线解析式为y=-x2+2x-或y=x2-2x;

(3)解:①由,
得x2-3x-b=0,
∴△=9+4b,
∵直线y=x+b与抛物线y=x2-2x没有交点,
∴△=9+4b<0,

∴当,直线y=x+b与(2)中的抛物线没有交点.

∴b的取值范围是b<-.
②,
-x2+2x-=x+b
x2-3x+(8+3b)=0,
∵直线y=x+b与抛物线y=-x2+2x-没有交点,
∴△=(-3)2-4×1×(8+3b)<0,
b>-,
即b的取值范围是:b<-或b>-.

解析分析:(1)分两种情况讨论.①当m=0时,方程为x-2=0求出方程的解x=2;②当m≠0,则得到一个一元二次方程,求出方程的根的判别式△=(m+1)2得出不论m为何实数,△≥0成立,即可得到
以上问题属网友观点,不代表本站立场,仅供参考!