如图,在梯形ABCD中,AD∥BC,若E,F,G,H分别是梯形ABCD各边AB、BC、CD、DA的中点.(1)求证:四边形EFGH平行四边形;(2)当梯形ABCD满足

发布时间:2020-08-06 10:15:25

如图,在梯形ABCD中,AD∥BC,若E,F,G,H分别是梯形ABCD各边AB、BC、CD、DA的中点.
(1)求证:四边形EFGH平行四边形;
(2)当梯形ABCD满足什么条件时,四边形EFGH是菱形;
(3)在(2)的条件下,梯形ABCD满足什么条件时,四边形EFGH是正方形.

网友回答

(1)证明:连接AC、BD.
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴EF∥AC,GH∥AC;
EF=AC,GH=AC.
∴EF∥GH,EF=GH.
∴四边形EFGH为平行四边形;

(2)解:∵EF=GH=AC,EH=FG=BD,
∴若四边形EFGH为菱形,
则EF=FG,从而AC=BD.得ABCD为等腰梯形,AD=BC.
∴当梯形ABCD的边满足AD=BC时,四边形EFGH为菱形.

(3)解:∵四边形EFGH为菱形,
根据有一个角是直角的菱形是正方形,
故梯形ABCD满足AC⊥BD条件时,四边形EFGH是正方形.
解析分析:(1)连接对角线,利用三角形中位线定理,根据平行四边形的判定方法判断.
(2)根据菱形四边相等可推出梯形对角线相等,即梯形是等腰梯形,AD=BC.
(3)要证明四边形EFGH是正方形,则要证明四边形EFGH有一个角是直角.

点评:此题考查了三角形中位线定理、菱形的性质、等腰梯形的判定,正方形的判定等知识点,综合性较强.
以上问题属网友观点,不代表本站立场,仅供参考!