如图,AB的中垂线为CP交AB于点P,且AC=2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB,其作法如下:甲作∠ACP、∠BCP的角平分线,分别

发布时间:2020-08-06 10:15:13

如图,AB的中垂线为CP交AB于点P,且AC=2CP.甲、乙两人想在AB上取D、E两点,使得AD=DC=CE=EB,其作法如下:甲作∠ACP、∠BCP的角平分线,分别交AB于D、E两点,则D、E即为所求;乙作AC、BC的中垂线,分别交AB于D、E两点,则D、E即为所求.对于甲、乙两人的作法,下列正确的是A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确

网友回答

A
解析分析:求出∠A=30°,∠ACP=60°,求出∠ACD=30°=∠A,即可推出AD=CD,同理BE=CE,即可判断甲,根据线段垂直平定县性质得出AD=CD,BE=CE,即可判断乙.

解答:
解:甲、乙都正确,
理由是:∵CP是线段AB的垂直平分线,
∴BC=AC,∠APC=∠BPC=90°,
∵AC=2CP,
∴∠A=30°,
∴∠ACP=60°,
∵CD平分∠ACP,
∴∠ACD=∠ACP=30°,
∴∠ACD=∠A,
∴AD=DC,
同理CE=BE,
即D、E为所求;
∵D在AC的垂直平分线上,
∴AD=CD,
同理CE=BE,
即D、E为所求,
故选A.

点评:本题考查了含30度角的直角三角形性质,三角形的内角和定理,线段垂直平分线性质的应用,主要考查学生运用定理进行推理的能力.
以上问题属网友观点,不代表本站立场,仅供参考!