已知:如图,△ABC是⊙O的内接正三角形,点D是的中点,连接BD并延长BD到点E,使BD=DE,连接CD和DE.(1)求证:△CDE是正三角形.(2)问:△CDE经怎

发布时间:2020-07-30 08:15:34

已知:如图,△ABC是⊙O的内接正三角形,点D是的中点,连接BD并延长BD到点E,使BD=DE,连接CD和DE.
(1)求证:△CDE是正三角形.
(2)问:△CDE经怎样的变换后能与△ABC成位似图形?请在图中直接画出△CDE变换后的对应三角形△CD'E',并求出△CD'E'与△ABC的位似比.

网友回答

解:(1)证明:∵△ABC是⊙O的内接正三角形,
∴∠BAC=60°,
∴∠CDE=60°,
∵点D是的中点,
∴BD=CD,
∵BD=DE,
∴CD=DE,
∴△CDE是正三角形;

(2)如图:当△CDE绕点C旋转∠ACD的度数时与△ABC成位似图形,
∵∠BDC=120°,BD=CD,
∴∠CBD=∠BCD=30°,
∵∠ACB=60°,
∴∠ACD=90°,
∴当△CDE绕点C旋转90°时与△ABC成位似图形,
作DF⊥BC于F点,
设DC=2x,
∵∠BCD=30°,
∴FC=,
∴BC=2FC=2x,
∴位似比====,
∴位似比为.

解析分析:(1)利用圆内接四边形的性质可以求得∠BDC的度数,然后利用有一个角是60°的等腰三角形是等边三角形可以判定等边三角形;(2)当CD与CA重合时,两三角形位似,所以当旋转∠ACD的度数的时候,两三角形位似,位似比等于CD与CA的比.∠B

点评:本题考查了位似变换、等边三角形的判定及性质、圆心角、弦、弧之间的关系,解题的关键是利用圆内接四边形的性质得到∠BDC的度数.
以上问题属网友观点,不代表本站立场,仅供参考!