如图,平行四边形ABCD的边AB:BC=2:3,∠ABC=60°顶点A在y轴上,B,C在x轴上,D点在反比例函数(x>0)的图象上,平行四边形CEFG的边CE:CG=

发布时间:2020-08-09 05:18:25

如图,平行四边形ABCD的边AB:BC=2:3,∠ABC=60°顶点A在y轴上,B,C在x轴上,D点在反比例函数(x>0)的图象上,平行四边形CEFG的边CE:CG=2:3,顶点E在CD上,G在x轴上,F点在反比例函数的图象上,则点F的坐标为________.

网友回答


解析分析:首先根据锐角三角函数关系求出CO的长,进而利用由平行四边形CEFG的边CE:CG=2:3,∠ABC=60°表示出F点坐标,进而求出F点坐标.

解答:解:过点D作DM⊥x轴于点M,过点F作FN⊥x轴于点N,
∵平行四边形ABCD的边AB:BC=2:3,∠ABC=60°顶点A在y轴上,
∴∠BAO=90°-60°=30°,
设AB=2x,则BO=x,BC=3x,
∴AO=x,
∴D(3x,x)
∵D点在反比例函数y=(x>0)的图象上,
∴3x×x=3,
解得:x=1,
∴CO=3-1=2,
∵∠ABC=60°,AB∥CD,
∴∠ECG=∠FGN=60°,
∵平行四边形CEFG的边CE:CG=2:3,设EC=2y,则CG=3y,
∴GN=GF=y,FN=y,
∴F(2+3y+y,y)
∵F点在反比例函数y=的图象上,
∴(2+3y+y)×y=3,
解得:y1=,y2=(不合题意舍去),
∴ON=2+3×+=1+,ON=×=,
∴点F的坐标为:(1+,).

点评:本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点及锐角三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!