设一个不等边三角形的最小内角为∠A,在下列四个度数中,∠A最大可取A.20°B.58°C.60°D.89°

发布时间:2020-07-29 22:53:59

设一个不等边三角形的最小内角为∠A,在下列四个度数中,∠A最大可取A.20°B.58°C.60°D.89°

网友回答

B
解析分析:根据三角形的三角形的内角和等于180°求出最小的角的度数的取值范围,然后选择即可.

解答:180°÷3=60°,∵不等边三角形的最小内角为∠A,∴∠A<60°,∴0°<∠A<60°,纵观各选项,∠A最大可取58°.故选B.

点评:本题考查了三角形的内角和定理,熟记定理求出∠A的取值范围是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!