如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线BD上有一点P,使PC+PE的和最小,则这个最小值为A.4B.2C.2D.2
网友回答
A
解析分析:根据正方形的性质,推出C、A关于BD对称,推出CP=AP,推出EP+CP=AE,根据等边三角形性质推出AE=AB=EP+CP,根据正方形面积公式求出AB即可.,
解答:∵正方形ABCD,∴AC⊥BD,OA=OC,∴C、A关于BD对称,即C关于BD的对称点是A,连接AE交BD于P,则此时EP+CP的值最小,∵C、A关于BD对称,∴CP=AP,∴EP+CP=AE,∵等边三角形ABE,∴EP+CP=AE=AB,∵正方形ABCD的面积为16,∴AB=4,∴EP+CP=4,故选A.
点评:本题考查了正方形的性质,轴对称-最短问题,等边三角形的性质等知识点的应用,解此题的关键是确定P的位置和求出EP+CP的最小值是AE,题目比较典型,但有一定的难度,主要培养学生分析问题和解决问题的能力.