若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别为x1,x2,则,.
解决下列问题:
已知:a,b,c均为非零实数,且a>b>c,关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一根为2.
(1)填空:4a+2b+c______0,a______0,c______0;(填“>”,“<”或“=”)
(2)利用阅读材料中的结论直接写出方程ax2+bx+c=0的另一个实数根(用含a,c的代数式表示);
(3)若实数m使代数式am2+bm+c的值小于0,问:当x=m+5时,代数式ax2+bx+c的值是否为正数?写出你的结论并说明理由.
网友回答
解:(1)∵4a+2b+c=0,
∴a,b,c至少有一个为正,
∵a>b>c,
∴a>0,
①当a>0,c>0时候,则b>0,所以4a+2b+c>0,与4a+2b+c=0矛盾,不合题意;
②当a>0,c<0时候,所以4a+2b+c可能等于0,
∴a>0,c<0;
故