如图,在平行四边形ABCD的边DC上截取DE=AD,延长AD至F,使得AF=AB,连接EB求证:EF=EB.

发布时间:2020-08-11 00:52:45

如图,在平行四边形ABCD的边DC上截取DE=AD,延长AD至F,使得AF=AB,连接EB
求证:EF=EB.

网友回答

解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,AB=DC,
∵AF=AB,DE=AD,
∴AF-AD=DC-AD=DC-DE,即DF=CE,
在△FDE和△ECB中,
∵,
∴△FDE≌△ECB,
∴EF=EB.
解析分析:根据平行四边形的对边相等,可判断DF=CE,DE=AD=BC,再由AD∥BC,得出∠FDE=∠ECB,利用SAS即可证明△FDE≌△ECB,从而得出结论.

点评:本题考查了平行四边形的性质,解答本题的关键是熟练掌握:平行四边形的对边平行且相等.
以上问题属网友观点,不代表本站立场,仅供参考!