如图,已知AB是⊙O的弦,半径OC、OD与AB分别交于点E、F,且AE=BF.求证:.

发布时间:2020-08-08 03:07:47

如图,已知AB是⊙O的弦,半径OC、OD与AB分别交于点E、F,且AE=BF.
求证:.

网友回答

证明:取AB中点G,连接OG并延长与⊙O交于H.
∵O是圆心,且G是弦AB的中点,
∴=;????????
∵AG=BG?且AE=BF,
∴EG=GF;
又∵OG过圆心,
∴=,
∴-=-,即=.
解析分析:取AB中点G,连接OG并延长与⊙O交于H.利用圆心角、弧、弦间的关系可以推知∴=;然后根据AE=BF以及垂径定理可知EG=GF,∴=;最后根据图形易证得结论.

点评:本题考查了垂径定理,圆心角弧、弦间的关系.解答本题时,通过作辅助线OH构建等弧(=,=)来证明结论的.
以上问题属网友观点,不代表本站立场,仅供参考!