【如图所示矩形纸片ABCD中AB=8将纸片折叠使顶点B落在AD的E点上BG=10(1)当折痕的】

发布时间:2021-03-20 18:51:58

如图所示矩形纸片ABCD中AB=8将纸片折叠使顶点B落在AD的E点上BG=10(1)当折痕的另一端F在AB边上时求三角形EFG的面积(2)当折痕的另一端在AB边上的时候证明四边形BGEF为菱形并求折痕GF的长     我是初一学生 不要弄我看不懂的按年级程度来 

网友回答

如图所示矩形纸片ABCD中AB=8将纸片折叠使顶点B落在AD的E点上BG=10(1)当折痕的另一端F在AB边上时求三角形EFG的面积(2)当折痕的另一端在AB边上的时候证明四边形BGEF为菱形并求折痕GF的长     我是初一学生 不要弄我看不懂的按年级程度来  (图3)(1)如图所示,由点E向BC边做垂线EH交BC于点H.
因为ABCD是矩形,所以EH=AB=8,AE=BH
由题中条件可知三角形EFG全等于三角形BFG,所以EG=BG=10,EF=BF,角FEG=90度
在直角三角形EHG中,由勾股定理,得HG^2+EH^2=EG^2(^2是平方的意思),代入值,得HG=6
因此,AE=BH=BG-HG=4
在直角三角形AFE中,由勾股定理,得AE^2+AF^2=EF^2
又因为EF=BF,AE=4,所以16+AF^2=BF^2
又因为AF+BF=AB=10,解得BF=5.8
综上所述,三角形EFG的面积=三角形BFG的面积=BF*BG/2=29
 
(2)由题中条件可知BF平行EG,EF平行BG,角HFE=角EGC
又因为角AFB=角HFE(对顶角定理),所以角AFB=角EGC
又因为角AFB+角BFE=180度,角EGC+角EGB=180度,
以上问题属网友观点,不代表本站立场,仅供参考!