如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,将腰CD以D为中心逆时针旋转90°至DE,连结AE、CE,△ADE的面积为12,则BC的长为_______

发布时间:2020-08-12 04:29:11

如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,将腰CD以D为中心逆时针旋转90°至DE,连结AE、CE,△ADE的面积为12,则BC的长为________.

网友回答

10
解析分析:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,由旋转的性质可知△CDF≌△EDG,从而有CF=EG,由△ADE的面积可求EG,得出CF的长,由矩形的性质得BF=AD,根据BC=BF+CF求解.

解答:过D点作DF⊥BC,垂足为F,过E点作EG⊥AD,交AD的延长线与G点,
由旋转的性质可知CD=ED,
∵∠EDG+∠CDG=∠CDG+∠FDC=90°,
∴∠EDG=∠FDC,又∠DFC=∠G=90°,
∴△CDF≌△EDG,
∴CF=EG,
∵S△ADE=AD×EG=12,AD=4,
∴EG=6,则CF=EG=6,
依题意得四边形ABFD为矩形,∴BF=AD=4,
∴BC=BF+CF=4+6=10.

点评:本题考查了旋转的性质的运用,直角梯形的性质的运用.关键是通过DC、DE的旋转关系,作出旋转的三角形.
以上问题属网友观点,不代表本站立场,仅供参考!