如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.(1)求证:AC平分∠DAB;(2)若AC=8,AD:BC=5:3,试求⊙O的半径.

发布时间:2020-08-07 02:31:08

如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.
(1)求证:AC平分∠DAB;
(2)若AC=8,AD:BC=5:3,试求⊙O的半径.

网友回答

(1)证明:∵OC∥AB
∴∠OCA=∠BAC
∵OA=OC
∴∠OAC=∠OCA
∴∠OAC=∠BAC
即AC平分∠DAB;

(2)解:∵AC平分∠DAB,
∴弧CD=弧BC
∴CD=BC
又AD:BC=5:3
∴AD:CD=5:3
∵AD是圆的直径,∴∠ACD=90°
根据勾股定理,得AD:CD:AC=5:3:4
所以AD=10,即圆的半径是5.
解析分析:(1)根据平行线的性质得到内错角相等,再根据同圆的半径相等得到∠OAC=∠OCA,运用等量代换的方法即可证明;
(2)根据(1)中的圆周角相等即可得到它们所对的弧相等,则等弧对等弦,即BC=CD.再根据勾股定理即可求解.

点评:此题综合运用了平行线的性质、等边对等角、圆周角定理的推论、等弧对等弦、以及勾股定理.
以上问题属网友观点,不代表本站立场,仅供参考!