如图,已知正方形ABCD中,E为CD边上的一点,F为BC延长线上一点,且CE=CF.若∠BEC=60°,求∠EFD的度数.

发布时间:2020-08-11 19:29:44

如图,已知正方形ABCD中,E为CD边上的一点,F为BC延长线上一点,且CE=CF.若∠BEC=60°,求∠EFD的度数.

网友回答

解:∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠DCF=90°.
∵CE=CF,
∴∠CFE=∠CEF=45°.
∵在△BCE和△DCF中

∴△BCE≌△DCF(SAS),
∴∠BEC=∠DFC=60°,
∴∠EFD=15°.
解析分析:根据正方形的性质可以求出∠DCF=90°,由CE=CF,得出∠CFE=45°,又由正方形的性质可以得出△BCE≌△DCF,就有∠BEC=∠DFC=60°,从而可以求出∠EFD的度数.

点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,解答时寻找条件证明三角形全等是关键.
以上问题属网友观点,不代表本站立场,仅供参考!