如图,点P是边长为1的菱形ABCD对角线AC上一个动点,点M,N分别为AB,BC边上的中点,则MP+NP的最小值是A.2B.1C.D.
网友回答
B
解析分析:首先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形PMBN为菱形,即可求出MP+NP=BM+BN=BC=1.
解答:解:作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形AM′NB是平行四边形,∴PN∥AB,又N是BC边上的中点,∴PN是△CAB的中位线,∴P是AC中点,∴PM∥BN,PM=BN,∴四边形PMBN是平行四边形,∵BM=BN,∴平行四边形PMBN是菱形.∴MP+NP=BM+BN=BC=1.故选B.
点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.