如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1

发布时间:2020-08-05 13:34:26

如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.
(1)用含x的代数式表示BQ、PB的长度;
(2)当x为何值时,△PBQ为等腰三角形;
(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.

网友回答

解:(1)∵∠B=90°,AC=10,BC=6,
∴AB=8.
∴BQ=x,PB=8-2x;

(2)由题意,得
8-2x=x,
∴x=.
∴当x=时,△PBQ为等腰三角形;

(3)假设存在x的值,使得四边形APQC的面积等于20cm2,
则,
解得x1=x2=2.
假设成立,所以当x=2时,四边形APQC面积的面积等于20cm2.

解析分析:(1)首先运用勾股定理求出AB边的长度,然后根据路程=速度×时间,分别表示出BQ、PB的长度;
(2)由于∠B=90°,如果△PBQ为等腰三角形,那么只有一种情况,即BP=BQ,由(1)的结果,可列出方程,从而求出x的值;
(3)根据四边形APQC的面积=△ABC的面积-△PBQ的面积,列出方程,根据解的情况即可判断.

点评:本题借助动点问题考查了勾股定理,路程与速度、时间的关系,等腰三角形的性质以及不规则图形的面积计算,综合性较强.
以上问题属网友观点,不代表本站立场,仅供参考!