虚数和复数分别是什么,什么是真实的虚数?

发布时间:2020-07-10 10:30:21

虚数和复数分别是什么,什么是真实的虚数?

网友回答

在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。
  后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
  可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。
  我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
  复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
  扩展资料
  一、虚数的定义:
  在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。
  对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
  实数和虚数组成的一对e799bee5baa6e4b893e5b19e31333366306433数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
  二、复数的定义:
  数集拓展到实数范围内,仍有些运算无法进行(比如对负数开偶数次方),为了使方程有解,我们将数集再次扩充。
  在实数域上定义二元有序对z=(a,b),并规定有序对之间有运算"+"、"×" (记z1=(a,b),z2=(c,d)):
  z1 + z2=(a+c,b+d)
  z1 × z2=(ac-bd,bc+ad)
  容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并且对任何复数z,我们有
  z=(a,b)=(a,0)+(0,1) × (b,0)
  令f是从实数域到复数域的映射,f(a)=(a,0),则这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。
  记(0,1)=i,则根据我们定义的运算,(a,b)=(a,0)+(0,1) × (b,0)=a+bi,i × i=(0,1) × (0,1)=(-1,0)=-1,这就只通过实数解决了虚数单位i的存在问题。
  形如  的数称为复数(plex number),其中规定i为虚数单位,且  (a,b是任意实数)
  我们将复数中的实数a称为复数z的实部(real part)记作Rez=a
  实数b称为复数z的虚部(imaginary part)记作 Imz=b.
  当a=0且b≠0时,z=bi,我们就将其称为纯虚数。
  复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。
  复数集是无序集,不能建立大小顺序。
  参考资料:
  百度百科-复数
  百度百科-虚数

网友回答

“虚数e69da5e887aa7a6431333431373933”这个名词,听起来好像“虚”,实际上却非常“实”。
  虚数是在解方程时产生的。求解方程时,常常需要将数开平方。如果被开方数不是负数,可以算出要求的根;如果是负数怎么办呢?
  譬如,方程x2+1=0,x2=-1,x=±-1。那么,-1有没有意义呢?在很久之前,大多数数学家认为负数没有平方恨。到了16世纪中叶,意大利数学家卡尔丹发表了《大法》这一数学著作,介绍了三次方程的求根公式。他不仅讨论了正根和负根,还讨论了虚数根。如解x2-15x+4=0这一方程时,依据他的求根公式,会得到:
  x=3-2+-121+3-2-121
  其中-121就是负数的平方根。卡尔丹写出了负数的平方根,但他认为这也仅仅是形式表示而已。说明他对负数平方根的性质并不了解。1637年,法国数学家笛卡尔开始用“实数”、“虚数”两个名词。1777年,瑞士数学家开始用符号i=-1表示虚数结合起来,写成a+bi形式(a、b)为实数,称为复数。
  由于虚数闯进数的领域时,人们对它的实际用处一无所知。在实际生活中似乎也没有用复数来表达的量,因此,在很长一段时间里,人们对虚数产生过种种怀疑和误解;笛卡尔称“虚数”的本意是指它是虚假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管是许多地方用了虚数,但又说一切形如-1、-2的数学式都是不可能有的,纯属虚幻的。
  欧拉之后,挪威一个测量学家维塞尔,提出把复数a+bi用平面上的点(a、b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的数量),这在水力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚!
以上问题属网友观点,不代表本站立场,仅供参考!