设函数f(x)的定义域为R,若存在常数M>0,使得|f(x)|≤M|x|对一切的实数x都成立,则称f(x)为“倍约束函数”.现给出下列函数:①f(x)=2x,②f(x)=x2+1,③f(x)=sinx+cosx,④<“m“:math dsi:zoomscale=150 dsi:_mathzoomed=1>f(x)=xx2-x+3,⑤f(x)是定义在实数集上的奇函数,且对一切的x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是“倍约束函数”的有A.1个B.2个C.3个D.4个
网友回答
C
解析分析:本题考查阅读题意的能力,根据“倍约束函数”,的定义进行判定:对①f(x)=2x,易知存在K=2符合题意;②由基本不等式,易得≥2恒成立;③令x=0时即可得出结论对;④中求出的值域,可得结论;⑤通过取x2=0,如此可得到正确结论.
解答:∵对任意x∈R,存在正数M,都有|f(x)|≤M|x|成立
∴对任意x∈R,存在正数K,都有 M≥成立
∴对于①f(x)=2x,易知存在M=2符合题意;
对于②,==|x|+≥2,故不存在满足条件的M值,故②错误;
对于③,f(x)=sinx+cosx,由于x=0时,|f(x)|≤M|x|不成立,故③错误;
对于④,=≤恒成立,故④正确;
对于⑤,当x1=x,x2=0时,由|f(x1)-f(x2)|≤2|x1-x2|得到|f(x)|≤2|x|成立,这样的M存在,故⑤正确;
故是“倍约束函数”的函数有3个
故选C.
点评:题属于开放式题,题型新颖,考查数学的阅读理解能力.知识点方面主要考查了函数的最值及其几何意义,考生需要有较强的分析问题解决问题的能力,对选支逐个加以分析变形,利用函数、不等式的进行检验,方可得出正确结论.